分数混合运算教学设计案例
【教学内容】教材第8~9页例6、例7。
知识与技能:
1、理解整数乘法运算定律对于分数乘法同样适用。
2、能应用这些定律进行一些简便计算。
过程与方法:熟练掌握运算定律,灵活、准确、合理地进行计算,进一步培养、发展观察推理能力。
情感、态度与价值观:善于交流合作,对学习有兴趣。
【重点难点】
重点:理解整数乘法运算定理对于分数的适用。
难点:运用运算定律进行简便计算。
【导学过程】
【知识回顾】
1、在整数乘法的运算中,我们学过了哪些运算定律?
乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c
【自主预习】
3大胆猜测整数乘法的运算定律是否适用于分数乘法?
自学第8页例6、第9页的例6并补充完整。看有什么发现。
【新知探究】
1、通过利用例6的三组算式,小组讨论、计算,得出两边式子的关系,来验证自己的猜测。
2、
,先独立计算,然后全班交流,说一说应用了什么运算定律?(应用乘法交换律)
+
×
,说说这道题适用哪个运算定律,为什么?
4、运用规律进行简便计算。
⑴出示例题7。
⑵让学生思考怎样计算比较简便,然后独立完成,如果遇到困难可以在小组里讨论交流。
指名板演:
交流时,让学生汇报自己的想法,分别说一说运用了哪种运算定律使计算简便。
【知识梳理】
本节课你学习了哪些知识?
我发现整数乘法的运算定律同样适用于( )乘法,分数混合运算的顺序和整数的运算顺序( )。应用乘法交换律、结合律和分配律,可以使一些计算简便,在计算时,要仔细观察已知数有什么特点,想想应用什么定律可以使计算简便。
【随堂练习】
1、拆数练习
= 9 = = 3 = =
通过练习,你有什么想说的吗?你认为拆数的目的是什么?
2、在□或〇里填上合适的数字或符号,并说明使用了什么运算定律?
(1)25××=( )×( × ) (2)25 ×4=□×□+□×□
(3)7×=□×□〇□×□ (4)54×(- )=□×□〇□×□
3、怎样简便就怎样算。
(- )×60 ×+ × 25×8
×(15×)×
4、练习二的相关题目
拓展阅读
1、五年级数学上册《分数加减混合运算》教案设计
第一课时
一 教学内容
教材第117 、118 的内容及第120页练习二十三的第1 一4 题。
二 教学目标
1 .通过教学,使学生掌握分数加减混合运算的顺序和计算方法,并掌握带有小括号的分数加减混合运算的顺序及算法。
2 .培养学生迁移、类推的能力和归纳、概括的能力。
3 .养成用简明、灵活的方法解决问题的习惯。
三 重点难点
四 教具准备
投影。
(一)导入
1 .说一说下列各题的运算顺序。
112+8-13 16-4+21 24-(18+3)
2 . 老师指出:分数加减混合运算的运算顺序和整数加减混合运算的运算顺序相同。
(二)教学实施
1 .出示例1 的表格。
( l )让学生读懂表格的内容,并用自己的语言表述出来。
( 2 )老师出示第一个问题:"森林部分比草地部分多几分之几?"
( 3 )提问:森林部分指什么?怎样列式?
( 4 )请学生试着算一算,集体交流计算方法。
老师**,请不同算法的同学板演。
方法一: + 一 方法二: + 一
= + 一 = + 一
= 一 =
= =
( 5 )小结计算方法:计算分数加减混合运算时,可以分步通分也可以一次通分进行计算。计算时,可以根据题目的特点和自己的情况灵活选择方法。
2 .出示例1 的第二个问题:"裸露地面储存的地下水占降水量的几分之几?
( l )先让学生看懂表格内容,然后老师提问:在这个问题中,把什么看作单位"1 " ? 是什么意思?
( 2 )请学生列出算式:1 - - 或1 -( + )
( 3 )请学生试着计算,并指名板演这两种方法的计算过程。
1 - - 1 -( + )
= - - =1 -( + )
= =1 -
=
提问:比较这两种方法有什么不同?带有小括号的分数加减混合运算该怎样计算?
3 .小结。
提问:你能说一说分数加减混合运算的顺序吗?
引导学生归纳概括出:分数加减混合运算与整数加减混合运算的顺序相同,也是按照从左往右的顺序计算,带有小括号的先算小括号里面的,再算小括号外面的。
4 .完成教材第118页的"做一做。
学生试着独立完成,集体交流计算过程,重点看运算顺序及书写美观情况。
5 .完成教材第120 页练习二十三的第1 - 4 题。
学生独立完成,集体订正。第2 - 4 题,鼓励学生用不同的方法解答。
(四)思维训练
某市举办一次数学竞赛,设一、二、三等奖若干名。获一、二等奖的占获奖总人数的 ,获二、三等奖的占获奖总人数的 。获二等奖的占获奖总人数的几分之几?
(五)课堂小结
本节课我们研究了分数加减混合运算的顺序和计算方法。分数加减混合运算的顺序与整数加减综合运算的顺序相同。
2、小学六年级《反比例》数学精选教学设计案例
1、通过实践活动,理解反比例的意义,并能根据反比例的意义,正确地判断两种相关联的量是否成反比例;
2、通过小组间的合作学习,培养学生的合作意识、参与意识,训练其观察能力及概括能力;
3、利用多媒体动画的演示,让学生体验到反比例的变化规律。
教学重点:感受反比例的变化,概括反比例的意义;
教学难点:正确判断两种相关联的量是否成反比例;
教学准备:20支铅笔、一个笔筒;相关课件;学生分小组(每组一份观察记录单)
每次拿的支数
10
5
4
2
1
拿的次数
总支数
一、复习
1、什么叫做“成正比例的量”?
2、判断两种量是否成正比例关键是什么?
3、练习:课本表中的两种量是不是成正比例?为什么?
二、小组协作 概括“成反比例的量”的意义
(一)活动一
师:好,现在请同学们拿出课前准备的学具,以小组为单位,动手操作,按要求认真填写观察记录单。看哪个组完成的又快又好!
1、学生汇报观察记录单的填写结果。
2、引导观察:在填、拿的过程中,你发现了什么?
3、师:你能根据表格,写出这三个量的关系式吗?
4、小结:通过刚才的活动,我们发现每次拿的支数变化,拿的次数也随着变化,但每次拿的支数和拿的次数的积即总支数总是一定的。
5、揭示反比例的意义(阅读课本,明确反比例关系)
6、如果用x、y 表示两种相关联的量,用k表示积,反比例关系式怎样表示?
(二)活动二:(例3)
1、课件出示例3,指名读题,学生独立完成
2、总结归纳出正比例和反比例的相同点和不同点
三、强化练习 发展提高
1判定两个量是否成反比例,主要看它们的( )是否一定。
2全班人数一定,每组的人数和组数。
( )和( )是相关联的量。
每组的人数×组数=全班人数(一定)
所以( )和( )是成反比例的量。
3判断下面每题中的两种量是不是成反比例,并说明理由。
糖果的总数一定,每袋糖果的粒数和装的袋数。
煤的总量一定,每天的烧煤量和能够烧的天数。
生产电视机的总台数一定,每天生产的台数和所用的天数。
长方形的面积一定,它的长和宽。
4机动练习:
想一想:铺地面积一定时,方砖边长与所需块数成不成反比例?为什么?
四、全课总结
1、你能不能结合日常生活举一些反比例的例子。
2、今天这节课,你有什么收获?还有什么遗憾?
3、《比例的意义》数学教案设计
1、 理解比例的意义,能运用比例的意义判断两个比能否组成比例,并会组比例。
2、探索国旗中蕴含的数学知识,渗透爱国主义教育,提高学生的认知能力。
3、体验获得成功的乐趣,建立学好数学的自信心。
教学重难点
教学难点:应用比例的意义判断两个比能否组成比例。
ppt课件
请同学们回忆一下上学期我们学过的比的知识,谁能说说:
1、什么叫做比?比的书写形式有哪些?
2、什么叫做比值?
一、情境引入
同学们,每个星期一的早上我们学校都会举行什么活动?我们一起说吧。
(生齐声说:升旗仪式)
课件出示:升旗仪式的情景
你们对这个情景已经非常熟悉了,你们对这面国旗的长和宽分别是多少了解吗?
不了解是吧?那老师告诉大家:
课件出示并介绍:我们这面国旗的长是2.4米、宽是1.6米。
提问:你除了在升旗仪式上还在生活中的哪些地方加到过国旗呢?
指名回答(学校周一升旗时操场上的国旗、会议桌上的国旗、教室后面的国旗、)
在很多的场合像我们的教室、还有大型的庆典活动上我们都可以看到庄严的国旗。
那么你们知道这些国旗的尺寸大小吗?追问:知道不知道?
那么下面呢我们看一下老师收集到的一些信息。
课件出示不同场合下的国旗
课件出示:不同场合下的国旗
提问:谁能用最简短的语言描述一下这四面国旗分别出现在什么地方?并读出它的长和宽(1)天安门广场的国旗,长5米,宽10/3米。
(2)学校的国旗长2.4米,宽1.6米。
(3)教室里面的国旗长60厘米,宽40厘米。
(4)会议桌上的国旗长15厘米,宽10厘米。
那我们现在看到的这些国旗的大小都一样吗?
师小结:在不同的场合的国旗的大小是不一样的。
追问:它们的形状相同吗?(相同)
尽管它们的大小不一样,但形状相同。我们看上去每面国旗在我们的眼中还是那么的庄严和美丽,那么的和谐和统一是吗?那么到底按照怎么样的标准才能制作出这种大小不同、形状相同的国旗呢?其实每面国旗的里面是否也蕴含着我们的数学知识呢—比例!(板书课题:比例)下面我们就一起来研究这个问题。
二:探究新知
下面请同学们拿出练习本,听清要求:
先写出图中国旗长与宽的比然后再求出它的比值。
学生自主计算,教师**。
提醒:同学们在计算时,一定要认真。 注意计算结果的准确性。
哪个同学愿意和大家来分享你的成果?和大家勇敢的分享你的成果。指名回答
根据学生汇报并分类板书。
5:10/3=3/2
2.4::16=3/2
60:40=3/2
15:10=3/2
大家同意他的计算结果吗?
师:请同学们观察黑板上的计算结果,看看有什么发现。
指名回答
师小结:说的非常好,这是个很重大的发现,这四面国旗它们的长与宽都有变化,但比值都是3/2 。其实呀不止这两面红旗长与宽的比是3:2,所有国旗长与宽的比的比值都是3/2,这在国旗法中有明文规定的
板书:5:10/3 2.4:1.6
师:像这样的两个比,它们的比值相等的,也就说这两个比相等,那么我们可以用什么符号把它们连接起来变成一个等式?
来大家一起把这个等式念一下(学生齐读)5:10/3=2.4:1.6
提问:那么谁能根据这四个 5:10/3=3/2
2.4:1.6=3/2
60:40=3/2
15:10=3/2
相等的比也像老师一样写一个等式呢?
指名回答并根据汇报板书
我们写的这些等式数学上把它叫做比例。谁能根据自己的理解说说什么叫做比例? 指名回答
老师明确:我们把表示两个比相等的式子叫做比例。(重点强调比值相等)
大家齐读两遍,开始。
学生齐读
这就是我们今天要学习的内容—比例的意义
板书课题
提问:在读了比例的意义以后,在这句话里你认为那些字非常重要呢?
指名回答
教师明确:两个比相等并在这句话的字的下面标上黑点
表示两个比相等的式子叫做比例。
。。 。 。。
那大家看一看:15∶3和60∶12能组成比例吗?你是怎样判断的? 对,15∶3的比值是5;60∶12的比值也是1.5,所以说15∶3和60∶12能组成比例。
那同学们,要判断两个比能不能组成比例,关键是看什么啊?对,判断两个比能不能组成比例,关键要看它们的比值是否相等。
追问并出示课件:那同学们,要判断两个比能不能组成比例,关键是看什么啊?
(指名回答)
大家同意吗?
对学生的回答进行评价
追问:如果不相等的话,能组成比例吗?
教学比例的另外一种写法:同学们知道比还有另外一种写法(分数的写法)像2.4:1.6=15:10这个比例还可以写成2.4/1.6=15/10,这是两种不同的写法!
(3)、合作探究:在四面国旗的长和宽的数据中,你还能找出哪些比可以组成比例??
请同学们在小组内讨论讨论!看哪个小组的同学找的多,开始吧!
班内交流: 哪位同学说一说你们小组找出来哪些比例?
同学们真了不起,从这四面大小不同的国旗中,就组成了这么多不同的比例。比老师找的还多呢,请看屏幕
展示: 2.4 :1.6 = 60 :40 (长:宽 = 长:宽)
1.6 :2.4 = 40 :60 (宽:长 = 宽:长)
2.4 : 60 =1.6 :40 (长:长 = 宽:宽)
......
这里能组成的比例还有很多,同学们课下再找出其他的比例吧!
2、比和比例的区别?
(1)同学们,以前学了比,现在又学比例,那你觉得比和比例一样吗?现在老师有个问题需要同学们帮忙解决一下,请看屏幕,“比和比例有什么区别?” 下面请同学们小组内探讨,一会儿告诉老师好吗?好,开始吧!
(2)交流:谁愿意来说一说你们小组讨论的结果?
(生答)
(3)展示:说的太好了,比由两个数组成,是一个式子,表示两个数相除。比例由四个数组成,是一个等式。它是表示两个比相等的式子。,请看屏幕上的表格
三、智慧城堡
师小结:今天这节课同学们表现得特别好,我们一起去智慧城堡闯闯关同学们有没有信心?
四、谈收获
这节课,大家都非常积极和认真,老师相信同学们的收获肯定很多,那谁想来和大家分享一下你的收获呢?
五、全课总结:
师小结:比例的知识在我们生活中的应用非常广泛,法国著名的建筑物埃菲尔铁塔,希腊雕像断臂维纳斯,还有闪烁的五角星,这些事物之所以能给我们美感,是因为它们的构造都和一个词“黄金比例”有关。希望你们课后能从生活中找到更多的“比例”,发现更多的数学知识,到那时,相信你们能够更深刻的感受到数学知识在我们的生活中真的是无时不在,无处不在。
课后小结
比例的知识在我们生活中的应用非常广泛,法国著名的建筑物埃菲尔铁塔,希腊雕像断臂维纳斯,还有闪烁的五角星,这些事物之所以能给我们美感,是因为它们的构造都和一个词“黄金比例”有关。希望你们课后能从生活中找到更多的“比例”,发现更多的数学知识,到那时,相信你们能够更深刻的感受到数学知识在我们的生活中真的是无时不在,无处不在。
转载请注明出处:https://www.iqto.cn/articles/31913.html